
Ways to keep it fun
with Hyvä Themes

Topics

1. Tailwind CSS in theme inheritance

3. Common checkout solutions
(React Checkout and Luma Checkout)

2. Optimizing Alpine JS components for better
performance

Tailwind CSS in theme inheritance

Node JS package

Splitting configurations

web/tailwind/config/colors.js

web/tailwind/tailwind-config.js

Extending parent configuration
theme1/web/tailwind/tailwind-config.js

theme2/web/tailwind/tailwind-config.js

Using Tailwind CSS features

Refer to a theme if possible

Use layers for structure and specificity

Useful tools for development

Official Prettier plugin
 https://github.com/tailwindlabs/prettier-plugin-tailwindcss

VS Code IntelliSence
 https://marketplace.visualstudio.com/items?itemName=bradlc.vscode-tailwindcss

VS Code Automatic class ordering
 https://marketplace.visualstudio.com/items?itemName=heybourn.headwind

PHP Storm Tailwind CSS Formatter
 https://plugins.jetbrains.com/plugin/13376-tailwind-formatter

Optimizing Alpine JS components
for better performance

Avoid big chunks of data in properties

Pre-render for lower CLS

Splitting the components

Splitting the components

Splitting the components

Create “lazy” components

● Replace x-data, x-init, x-bind with x-lazy-data, x-lazy-init,
x-lazy-bind

● Create an intersection observer for such elements

● When intersecting - change attributes back and use one of the methods:

Don’t forget about dev tools

Alpine JS dev tools for Google Chrome
 https://chrome.google.com/webstore/detail/alpinejs-devtools/fopaemeedckajflibkpifppcankfmbhk

Alpine JS dev tools for Firefox
 https://addons.mozilla.org/en-US/firefox/addon/alpinejs-devtools/

Common checkout solutions

React Checkout Pros & Cons

Works faster

Easier for building UI

Less complicated structure

Takes more time to extend

Poor base of 3rd party extensions

Requires experience in GraphQL API

Luma Checkout & Procrastination

Tailwind CSS only Grunt + Less only Grunt + Less + Tailwind CSS

● Rewrite styles for
Magento class names

● Rewrite templates
with utility classes

● Migrate theme
variables

● Work with everything
else as if there’s no
Hyva theme

● A mix of both

● Unclear when to use
what. Depends on the
project and a reason of
choosing this approach

It’s time for your questions!

@alexgaldin1

